A Scalable Data Augmentation and Training Pipeline for Logo Detection


Published December 11, 2019

Han Guo, Vishy Swaminathan, Saayan Mitra

Best Paper Award

Logo detection in images is particularly challenging due to limited access to well-labelled data. Many existing logo detection methods are not scalable to larger datasets due to tedious bounding-box annotation work. As a result, with only a small number of logo classes and limited well-labelled images per class, their performance deteriorates on real-world applications. In this work, we propose a data augmentation and training pipeline to tackle these challenges. Specifically, we develop an incremental learning approach that starts training using synthetic data, followed by iteratively obtaining real training images from a given source and updating the current model with the newly obtained data. To avoid model drift, we add a human curation step where incorrect detections (false-positives) are filtered out by simple-clicks using a User Interface, we designed. With this approach, we were able to generate a large (173,000 images of 173 logo classes) dataset termed Logo173 where all images are annotated with bounding-boxes. This image dataset can also be used to train a frame-by-frame baseline logo detector for videos. We demonstrate with extensive experiments that the proposed pipeline significantly saves time and effort for tedious data annotation and outperforms a current state-of-the-art logo detection method.

Research Area:  AI & Machine Learning