We introduce an inversion based method, denoted as IMAge-Guided model INvErsion (IMAGINE), to generate high-quality and diverse images from only a single training sample. We leverage the knowledge of image semantics from a pre-trained classifier to achieve plausible generations via matching multi-level feature representations in the classifier, associated with adversarial training with an external discriminator. IMAGINE enables the synthesis procedure to simultaneously 1) enforce semantic specificity constraints during the synthesis, 2) produce realistic images without generator training, and 3) give users intuitive control over the generation process. With extensive experimental results, we demonstrate qualitatively and quantitatively that IMAGINE performs favorably against state-of-the-art GAN-based and inversion-based methods, across three different image domains (i.e., objects, scenes, and textures).
Learn More