We propose a method for constructing a video sequence of high space-time resolution by combining information from multiple low-resolution video sequences of the same dynamic scene. Super-resolution is performed simultaneously in time and in space. By “temporal super-resolution,” we mean recovering rapid dynamic events that occur faster than regular frame-rate. Such dynamic events are not visible (or else are observed incorrectly) in any of the input sequences, even if these are played in “slowmotion.” The spatial and temporal dimensions are very different in nature, yet are interrelated. This leads to interesting visual trade-offs in time and space and to new video applications. These include: 1) treatment of spatial artifacts (e.g., motion-blur) by increasing the temporal resolution and 2) combination of input sequences of different space-time resolutions (e.g., NTSC, PAL, and even high quality still images) to generate a high quality video sequence. We further analyze and compare characteristics of temporal super-resolution to those of spatial super-resolution. These include: How many video cameras are needed to obtain increased resolution? What is the upper bound on resolution improvement via super-resolution? What is the temporal analogue to the spatial “ringing” effect?
Learn More