Publications

Dynamic Path Reasoning for Measurement Relation Extraction

SemEval 2021

Publication date: August 6, 2021

Amir Pouran Ben Veyseh, Franck Dernoncourt, Thien Huu Nguyen

Scientific documents are replete with measurements mentioned in various formats and styles. As such, in a document with multiple quantities and measured entities, the task of associating each quantity to its corresponding measured entity is challenging. Thus, it is necessary to have a method to efficiently extract all measurements and attributes related to them. To this end, in this paper, we propose a novel model for the task of measurement relation extraction (MRE) whose goal is to recognize the relation between measured entities, quantities, and conditions mentioned in a document. Our model employs a deep translation-based architecture to dynamically induce the important words in the document to classify the relation between a pair of entities. Furthermore, we introduce a novel regularization technique based on Information Bottleneck (IB) to filter out the noisy information from the induced set of important words. Our experiments on the recent SemEval 2021 Task 8 datasets reveal the effectiveness of the proposed model.