Humans routinely sit or lean against supporting surfaces and it is important to shape these surfaces to be comfortable and ergonomic. We give a method to design the geometric shape of rigid supporting surfaces to maximize the ergonomics of physically based contact between the surface and a deformable human. We model the soft deformable human using a layer of FEM deformable tissue surrounding a rigid core, with measured realistic elastic material properties, and large-deformation nonlinear analysis. We define a novel cost function to measure the ergonomics of contact between the human and the supporting surface. We give a stable and computationally efficient contact model that is differentiable with respect to the supporting surface shape. This makes it possible to optimize our ergonomic cost function using gradient-based optimizers. Our optimizer produces supporting surfaces superior to prior work on ergonomic shape design. Our examples include furniture, apparel and tools. We also validate our results by scanning a real human subject's foot and optimizing a shoe sole shape to maximize foot contact ergonomics. We 3D-print the optimized shoe sole, measure contact pressure using pressure sensors, and demonstrate that the real unoptimized and optimized pressure distributions qualitatively match those predicted by our simulation.
Learn More