Publications

ISSE: An Interactive Source Separation Editor

ACM Human Factors in Computing Systems (CHI)

Published April 26, 2014

Nicholas J. Bryan, Gautham Mysore, Ge Wang

Traditional audio editing tools do not facilitate the task of separating a single mixture recording (e.g. pop song) into its respective sources (e.g. drums, vocal, etc.). Such ability, however, would be very useful for a wide variety of audio applications such as music remixing, audio denoising, and audio-based forensics. To address this issue, we present ISSE‚Äďan interactive source separation editor. ISSE is a new open-source, freely available, and cross-platform audio editing tool that enables a user to perform source separation by painting on time-frequency visualizations of sound, resulting in an interactive machine learning system. The system brings to life our previously proposed interaction paradigm and separation algorithm that learns from user-feedback to perform separation. For evaluation, we conducted user studies and compared results between inexperienced and expert users. For a variety of real-world tasks, we found that inexperienced users can achieve good separation quality with minimal instruction and expert users can achieve state-of-the-art separation quality.

Learn More