LayerCode: Optical Barcodes for 3D Printed Shapes

ACM Transactions on Graphics (SIGGRAPH)

Publication date: August 1, 2019

Henrique Teles Maia, Dingzeyu Li, Changxi Zheng

With the advance of personal and customized fabrication techniques, the capability to embed information in physical objects becomes evermore crucial. We present LayerCode, a tagging scheme that embeds a carefully designed barcode pattern in 3D printed objects as a deliberate byproduct of the 3D printing process. The LayerCode concept is inspired by the structural resemblance between the parallel black and white bars of the standard barcode and the universal layer-by-layer approach of 3D printing. We introduce an encoding algorithm that enables the 3D printing layers to carry information without altering the object geometry. We also introduce a decoding algorithm that reads the LayerCode tag of a physical object by just taking a photo. The physical deployment of LayerCode tags is realized on various types of 3D printers, including Fused Deposition Modeling printers as well as Stereolithography based printers. Each offers its own advantages and tradeoffs. We show that LayerCode tags can work on complex, nontrivial shapes, on which all previous tagging mechanisms may fail. To evaluate LayerCode thoroughly, we further stress test it with a large dataset of complex shapes using virtual rendering. Among 4,835 tested shapes, we successfully encode and decode on more than 99% of the shapes.

Learn More