Modeling Stylized Character Expressions via Deep Learning

Asian Conference on Computer Vision (ACCV)

Publication date: November 21, 2016

Deepali Aneja, Alex Colburn, Gary Faigin, Linda Shapiro, Barbara Mones

We propose DeepExpr, a novel expression transfer approach from humans to multiple stylized characters. We first train two Convolutional Neural Networks to recognize the expression of humans and stylized characters independently. Then we utilize a transfer learning technique to learn the mapping from humans to characters to create a shared embedding feature space. This embedding also allows human expression-based image retrieval and character expression-based image retrieval. We use our perceptual model to retrieve character expressions corresponding to humans. We evaluate our method on a set of retrieval tasks on our collected stylized character dataset of expressions. We also show that the ranking order predicted by the proposed features is highly correlated with the ranking order provided by a facial expression expert and Mechanical Turk experiments.

Learn More