Relation Extraction (RE) is one of the fundamental tasks in Information Extraction. The goal of this task is to find the semantic relations between entity mentions in text. It has been shown in many previous work that the structure of the sentences (i.e., dependency trees) can provide important information/features for the RE models (for both feature engineering and deep learning models). However, the common limitation of the previous work on RE is the reliance on some external parsers to obtain the syntactic trees for the sentence structures. On the one hand, it is not guaranteed that the independent external parsers can offer the optimal sentence structures for RE and the customized structures for RE might help to further improve the performance. On the other hand, the quality of the external parsers might suffer when applied to different domains, thus also affecting the performance of the RE models on such domains. In order to overcome this issue, in this paper, we introduce a novel method for RE that simultaneously induces the structures and predicts the relations for the input sentences, thus avoiding the external parsers and potentially leading to better sentence structures for RE. Our general strategy to learn the RE-specific structures for sentences is to apply two different methods to infer the structures for the input sentences for RE (i.e., two views). We then introduce several mechanisms to encourage the structure and semantic consistencies between these two views so the effective structure and semantic representations for RE can emerge. We perform extensive experiments on the ACE 2005 and SemEval 2010 datasets to demonstrate the advantages of the proposed method, leading to the state-of-the-art performance on such datasets.