Publications

A Personalized Conversational Benchmark: Towards Simulating Personalized Conversations

NeurIPS 2025 MTI-LLM workshop

Publication date: December 7, 2025

Li Li, Peilin Cai, Ryan A. Rossi, Franck Dernoncourt, Branislav Kveton, Junda Wu, Tong Yu, Linxin Song, Tiankai Yang, Yuehan Qin, Nesreen K. Ahmed, Samyadeep Basu, Subhojyoti Mukherjee, Ruiyi Zhang, Zhengmian Hu, Bo Ni, Yuxiao Zhou, Zichao Wang, Yue Huang, Yu Wang, Xiangliang Zhang, Philip S. Yu, Xiyang Hu, Yue Zhao

Spotlight paper (top 5%)

Autoregressive models (ARMs) are widely regarded as the cornerstone of large language models (LLMs). We challenge this notion by introducing LLaDA, a diffusion model trained from scratch under the pre-training and supervised fine-tuning (SFT) paradigm. LLaDA models distributions through a forward data masking process and a reverse process, parameterized by a vanilla Transformer to predict masked tokens. By optimizing a likelihood bound, it provides a principled generative approach for probabilistic inference. Across extensive benchmarks, LLaDA demonstrates strong scalability, outperforming our self-constructed ARM baselines. Remarkably, LLaDA 8B is competitive with strong LLMs like LLaMA3 8B in in-context learning and, after SFT, exhibits impressive instruction-following abilities in case studies such as multi-turn dialogue. Moreover, LLaDA addresses the reversal curse, surpassing GPT-4o in a reversal poem completion task. Our findings establish diffusion models as a viable and promising alternative to ARMs, challenging the assumption that key LLM capabilities discussed above are inherently tied to ARMs. Project page and codes: https://ml-gsai.github.io/LLaDA-demo/

Learn More